Book/Dissertation / PhD Thesis FZJ-2018-02612

http://join2-wiki.gsi.de/foswiki/pub/Main/Artwork/join2_logo100x88.png
Reduktion von Edelmetallen in der Wasserstoffelektrode bei der Polymerelektrolyt-Wasserelektrolyse



2018
Forschungszentrum Jülich GmbH Zentralbibliothek, Verlag Jülich
ISBN: 978-3-95806-320-4

Jülich : Forschungszentrum Jülich GmbH Zentralbibliothek, Verlag, Schriften des Forschungszentrums Jülich Reihe Energie & Umwelt / Energy & Environment 420, VIII, 186 S. () = RWTH Aachen, Diss., 2017

Please use a persistent id in citations:

Abstract: In order to reduce CO emissions, the increased use of renewable energy sources is indispensable. The generation of electricity from renewable energy sources, however, is weather-dependent and intermittent. Chemical energy storage is considered a key technology for the utilization of irregularly generated electricity. Excess electricity can be converted into hydrogen by means of electrolysis of water. If required, a reconversion of the hydrogen can take place. Polymer electrolyte water electrolysis is capable of following the dynamic load profile of renewable energy sources, but large amounts of platinum are needed as a catalyst for the hydrogen production reaction. A main task is to reduce the amount of platinum used without affecting efficiency. Furthermore, the influence of reduced electrode loading on the long-term stability of the electrolyzer is largely unexplored. In this work, the influence of the reduction of the platinum content on the cathode of a polymer electrolyte water electrolyzer on its efficiency and long-term stability is investigated. On the one hand, the reduction of the loading is aimed at by the synthesis of novel, platinum-based catalysts with a high activity, and on the other hand a reduced amount of commercially available catalysts is used. These catalysts are subjected to physicochemical analyses and their electrochemical characteristics are recorded by means of half-cell measurements. For the study of cathode aging, protocols are being developed to simulate accelerated degradation of the cathode. In addition, the characteristics of these catalysts are recorded and analyzed under real electrolysis conditions before and after aging. By means of electron microscopy, the occurring aging mechanisms are examined more closely. A novel, microporous catalyst has been developed, which has a higher exchange current density than the reference material platinum. With the help of platinum-based commercially available catalysts, the loading was reduced by a factor of 80, with a slight deteriorationin performance was found. While at a high cathode loading the accelerated aging did not change the cell characteristics, a small deterioration in cell efficiency was observed at a cathode loading of 0.01 mgPtcm$^{−2}$. Electron microscopic examination of the aging mechanisms revealed platinum particle growth as a result of accelerated aging tests. Furthermore, a migration of the platinum particles was observed, the intensity of which depended on the applied overvoltage.


Note: RWTH Aachen, Diss., 2017

Contributing Institute(s):
  1. Elektrochemische Verfahrenstechnik (IEK-3)
Research Program(s):
  1. 899 - ohne Topic (POF3-899) (POF3-899)

Appears in the scientific report 2018
Database coverage:
Creative Commons Attribution CC BY 4.0 ; OpenAccess
Click to display QR Code for this record

The record appears in these collections:
Document types > Theses > Ph.D. Theses
Institute Collections > IEK > IEK-3
Document types > Books > Books
Workflow collections > Public records
Publications database
Open Access

 Record created 2018-04-25, last modified 2021-01-29